

Reflectarray design:

Panel configuration

	S/N 001	S/N 002
Computed directivity	30.56	30.50
Feed loss	-0.74	-0.74
Patch dielectric loss	-0.25	-0.25
Patch conductor loss	-0.04	-0.04
Mismatch loss	-0.14	-0.14
Hinge mounting area loss	-0.15	-0.15
Total loss	-1.32	-1.32
GAIN predict	29.24	29.18

UHF deployable antenna: achieving circular polarization with a deployable loop.

UHF deployable antenna: achieving circular polarization with a deployable loop.

UHF deployable antenna: achieving circular polarization with a deployable loop.

Deployed

Stowed

RHCP (sim.)
--LHCP (sim.)
--RHCP (meas.)
--LHCP (meas.)

100

50

UHF deployable antenna: achieving circular polarization with a deployable loop.

- Reflectarray demonstrated in Space:
 - Successful deployment of two antennas in space
 - Quick gain assessment has shown that the gain is within ±0.4dB.
 - Pattern successfully verified in space
- An historical deployment witnessed by a picture of Mars

RAINCUBE - First Active Radar in a CubeSat

Ka-band deployable mesh reflector antenna:

0.5-m reflector Ka-band antenna

Polarization: V-polarization

Gain: 42.6 dBiEfficiency: 56%

N. Chahat, *et al.*, "CubeSat Deployable Ka-Band Mesh Reflector Antenna Development for Earth Science Missions," *IEEE Trans. Antennas & Propag.*, vol. 64, no. 6, pp. 2083-2093, June 2016.

RAINCUBE - First Active Radar in a CubeSat

Ka-band deployable mesh reflector antenna:

- 0.5-m reflector Ka-band antenna
- Polarization: V-polarization
- Gain: 42.6 dBiEfficiency: 56%

N. Chahat, et al., "CubeSat Deployable Ka-Band Mesh Reflector Antenna Development for Earth Science Missions," *IEEE Trans. Antennas & Propag.*, vol. 64, no. 6, pp. 2083-2093, June 2016.

Jet Propulsion Laboratory California Institute of Technology

RAINCUBE - First Active Radar in a CubeSat

N. Chahat, *et al.*, "CubeSat Deployable Ka-Band Mesh Reflector Antenna Development for Earth Science Missions," *IEEE Trans. Antennas & Propag.*, vol. 64, no. 6, pp. 2083-2093, June 2016.

Jet Propulsion Laboratory California Institute of Technology

RAINCUBE - First Active Radar in a CubeSat

N. Chahat, *et al.*, "CubeSat Deployable Ka-Band Mesh Reflector Antenna Development for Earth Science Missions," *IEEE Trans. Antennas & Propag.*, vol. 64, no. 6, pp. 2083-2093, June 2016.

OMERA – Larger Deployable Reflectarray

Ka-band deployable reflectarray:

• 1-m reflector Ka-band antenna (98.6cm×82.1cm)

• Polarization: V-polarization

• Gain: > 47.0 dBi

• Efficiency: 47%

	Gain (dBi)	Loss (dB)
Ideal directivity	51.58	-
Spillover	50.67	0.91
Taper	49.95	0.72
Blockage	49.67	0.28
Struts	49.37	0.3
Gap loss	49.22	0.15
Patch dielectric /	48.97	0.25
conductivity loss	10.57	0.23
Surface accuracy *	47.77	1.2
Feed loss / telescoping waveguide / transition	47.47	0.3
Feed mismatch (RL=17dB)	47.38	0.09
Overall performance	47.38	4.2

OMERA – Larger Deployable Reflectarray

Ka-band deployable reflectarray:

- 1-m reflector Ka-band antenna (98.6cm×82.1cm)
- Polarization: V-polarization
- Gain: > 47.0 dBi
- Efficiency: 47%

Gain = 47.1dBi at 35.75GHz

Ka-band deployable mesh reflector antenna:

- 1-m reflector Ka-band antenna
- Polarization: RHCP
- Gain: > 36.8 dBic at X-band and 48dBic at Ka-band
- Efficiency: 62% at X and Ka-band

N. Chahat *et. al*, "One-Meter Deployable Mesh Reflector for Deep Space Network Telecommunication at X- and Ka-band," in *IEEE Transactions on Antennas and Propagation*.

Feed at X-band

Feed at Ka-band

N. Chahat *et. al*, "One-Meter Deployable Mesh Reflector for Deep Space Network Telecommunication at X- and Ka-band," in *IEEE Transactions on Antennas and Propagation*.

Gain Table at X-band

	Uplin	Downlink		
	Gain (dBic)	Loss (dB)	Gain (dBic)	Loss (dB)
Standard directivity	37.5	-	38.9	-
Taper	37.2	0.3	38.4	0.5
Spillover	36.3	0.9	37.4	1.0
Surface mesh* (30OPI)	36.28	0.02	37.38	0.02
Surface accuracy** (±0.38mm)	36.22	0.06	37.30	0.08
Feed loss	35.92	0.3	37.00	0.3
Feed mismatch (RL=15dB)	35.82	0.1	36.90	0.1
Overall performance	35.82	1.68	36.90	2.00

Calculated and measured performance

Error (CU=)	Directivity (dBi)		Gain (dBic)		Efficiency (%)	
Freq. (GHz)	Calc.	Meas.	Calc.	Meas.	Calc.	Meas.
7.1675	36.3	36.9	35.8	36.1	68	72
8.425	37.4	38.2	36.9	36.8	64	62

Uplink

Downlink

N. Chahat *et. al*, "One-Meter Deployable Mesh Reflector for Deep Space Network Telecommunication at X- and Ka-band," in *IEEE Transactions on Antennas and Propagation*.

Gain Table at X-band

	Gain (dBic)	Loss (dB)
Standard directivity	50.5	-
Taper	49.9	0.6
Spillover	49.5	0.4
Surface mesh* (30OPI)	49.25	0.25
Surface accuracy** (±0.38mm)	48.15	1.1
Feed loss	48.10	0.05
Feed mismatch (RL=15dB)	48.05	0.05
Overall performance	48.05	2.45

Calculated and measured performance

	Directivity (dBi)		Gain (dBic)		Efficiency (%)	
Frequency (GHz)	Calc.	Meas.	Calc.	Meas.	Calc.	Meas.
32	48.4	48.8	48.1	48.4	58	62
34.45	48.5	49.0	48.3	48.7	52	57

N. Chahat *et. al*, "One-Meter Deployable Mesh Reflector for Deep Space Network Telecommunication at X- and Ka-band," in *IEEE Transactions on Antennas and Propagation*.

D. González-Ovejero *et al.*, "Additive Manufactured Metal-Only Modulated Metasurface Antennas," in *IEEE Transactions on Antennas and Propagation*, vol. 66, no. 11, pp. 6106-6114, Nov. 2018.

More Reflectarrays - X-band

Features:

- Compatible with 6U CubeSat
- X-band design for Telecom
- Transmit only
- Deployed area: 600mm × 670mm
- Gain of 33.0dBic between 8.4-8.45GHz

30.0 20.0 10.0 -10.0 -45.0 Angle (degree)

More Reflectarrays – Ka-band

Features:

- Compatible with 6U CubeSat
- Ka-band design for Telecom
- Transmit only
- Deployed area: 600mm × 670mm
- Gain of 44.0dBic between 31.8-32.3GHz

More Reflectarrays – X/Ka-band

Features:

- Compatible with 6U CubeSat
- X- and Ka-band design for Telecom
- Transmit only
- Deployed area: 600mm × 670mm
- Gain of 32dBic between 8.4-8.45GHz
- Gain of 43.5.0dBic between 31.8-32.3GHz
- Co-located feed with identical beam-pointing

X-band elements in green (h_X =1.5mm) Ka-band elements in blue (h_{Ka} =0.406mm)

REFERENCES - JOURNALS

- N. Chahat *et al.*, "One-Meter Deployable Mesh Reflector for Deep Space Network Telecommunication at X-and Ka-band," in *IEEE Transactions on Antennas and Propagation*.
- N. Chahat *et al.*, "Advanced CubeSat Antennas for Deep Space and Earth Science Missions: A review," in *IEEE Antennas and Propagation Magazine*, vol. 61, no. 5, pp. 37-46, Oct. 2019.
- T. Cwik et al., "Deployable reflectarray antenna," US Patent #10,276,926 B2, Issue date on 4/30/2019.
- N. Chahat et al., "All-Metal Dual-Frequency RHCP High-Gain Antenna for a Potential Europa Lander," in *IEEE Transactions on Antennas and Propagation*, vol. 66, no. 12, pp. 6791-6798, Dec. 2018.
- D. González-Ovejero *et al.*, "Additive Manufactured Metal-Only Modulated Metasurface Antennas," IEEE Transactions on Antennas and Propagation, vol. 66, no. 11, pp. 6106-6114, Nov. 2018.
- N. Chahat, "A mighty antenna from a tiny CubeSat grows," IEEE Spectrum, vol. 55, no. 2, pp. 32-37, Jan. 2018.
- N. Chahat *et al.*, "The Deep Space Network Telecommunication CubeSat Antenna: Using the deployable Ka-band mesh reflector antenna," IEEE Antenna Propag. Magazine, vol. 4, April 2016.
- N. Chahat et al., "CubeSat Deployable Ka-Band Mesh Reflector Antenna Development for Earth Science Missions," *IEEE Trans. Antennas & Propag.*, vol. 64, no. 6, pp. 2083-2093, June 2016.
- R. E. Hodges *et al.*, "A Deployable High-Gain Antenna Bound for Mars: Developing a new folded-panel reflectarray for the first CubeSat mission to Mars," IEEE Antenna Propag. Magazine, vol. 4, April 2016.

REFERENCES - BOOK

• N. Chahat, "CubeSat Antennas for Earth Science and Interplanetary missions", Wiley / IEEE Press, In Press, 2020.

